

Own i reennology		
Upgridding	Upscaling	
Layer design based on an error analysisHow coarse a grid is optimal?Have explored different error measures	 Well index upscaling provides upscaled cell permeabilities Suitable for visualization Preserves continuity Does not capture flow barriers 	
Areal grid coarsening usually depends on well spacing or CPU requirements	 Transmissibility upscaling preserves the flow connectivity and barriers Local flow calculation imposes planar pressure boundary conditions Transmissibility multipliers may be used to visualize barriers 	

SWIFT Technology: Upgridding

 Recursive analysis used to design and identity optimal layering

5

Static Property Upscaling Weights come from the previous equation in the hierarchy Conserved **Expressed** as an **Summation** Volume Averaged **Bulk Rock** $MULTBV.BRV = \sum_{i} BRV_i$ $MULTBV = \frac{\sum_{i} BRV_{i}}{BRV}$ Volume $NTG.MULTBV.BRV = \sum_{i} NTG_{i}.BRV_{i}$ Net Rock $NTG = \frac{\sum_{i} NTG_{i} \cdot BRV_{i}}{\sum_{i} BRV_{i}}$ Volume ϕ .NTG.MULTBV.BRV = $\sum_{i} \phi_{i}$.NTG_i.BRV_i $\phi = \frac{\sum_{i} \phi_{i}.NTG_{i}.BRV_{i}}{\sum_{i} NTG_{i}.BRV_{i}}$ Pore Volume **MCERI** 6

SWIFT Workflows

Input Upariddina	Fine scale model	Fine scale model into Petrel
Upariddina		__
opg	COARSEN REYWOLD	SWIFT builds coarse grid
Upscaling and	ated fine cell permeabilities transmissibility multipliers supplied	Property upscaling can be performed by Petrel
MCEDI		

SWIFT: Output Files		
File(s)	Function	
COARSEN	Simulation grid coarsening as per SWIFT layer design algorithm	
COARSE_PERMX, COARSE_PERMY, COARSE_PERMZ COARSE_PORO, COARSE_NTG	Replaces the fine scale cell properties with the coarse average properties (Replaces the original fine scale data)	
MULTX, MULTY, MULTZ	Transmissibility multipliers to get the effective coarse transmissibility using SWIFT upscaling algorithm	
SWIFT_SUMMARY	Summary of keywords to be included in the GRID section	
MCERI	11	

Complete Simulator Workflow	
TPERIODING ALGORITHM	THIS IS THE RUMMARY FILE OF SWIFT OUFUTS
UPPCALING CHOICE LAIAN, JARAH, JAKH, None ZAZH	FOR 1X200,3X3RN, PLEASE DELETE THE OBIGINAL PENDO, FENNY, PENMI PLEASE COPY AND PASTE THE FOLLOWING TEXT TO THE GRID SECTION
NAMERS marker locations // / // /- Disposition Tobaquersitor	PENGK FILR INCLUSE FENGE.inc PERGY FILE INCLUSE FERGY.inc
output 3DDLapocetine 	INCLUSE FRAMA.inc
UNIT_MAX Musimum number of fine layers which are allowed to be combined.	TRANSMISSIBILITY MULTIPLIERS IN Y DIRECTION- INCLUDE MULTY dat
OUTPUT Outputs are generated in one of these formats->(ELIPSE-=ELIPSE OR VIP/HEXUS==VIP) ELIPSE	TRANSMISSIBILITY MULTIPLIERS IN 2 DIRECTION INCLUSE MOLT2.Gas
F93.5 3793.2	COAREN FILE INCLUDE RCL_COAREN.dat
GRID/INIT for reservoir model	SWIFT-SUMMARY FILE 20