Demonstration of GLOBAL

Aditya Vyas November 10th, 2015

Outline

- Introduction
- Global Algorithm
- Eclipse Model Description
- Global Workflow
- View Global Results
- Global GUI

Introduction

- GLOBAL is a History Matching software based on a derivative-free method
- Options for Forward Models FMM, ECLIPSE and CMG
- It uses algorithms of Latin Hypercube Sampling, Genetic algorithm, Kriging, etc
- Developed in C++ and C# (for GUI)
- Can be implemented in both Windows and Linux

Global Algorithm

✓ GA based Optimization Software

ECLIPSE Synthetic Case

Model for synthetic case

- 3D three-phase reservoir
- Grid blocks: 11×11×6
- One injector and four producers
- Three global regions defined by model layers (1-2, 3-4, 5-6)
- Uncertain Parameters:

pore volumes (regions 1-3) horizontal permeability (regions 1-3) vertical transmissibility (x2)

Workflow Steps

- Identify global unknowns
- Construct Template Files (.TMPL)
- Construct Distribution File (.DISTR)
- Prepare GLOBAL Input file (.INP)
- Run GLOBAL in command prompt window
- View Objective file (*.OBJ)

STEP 1: Construct Template Files (.TMPL)

.TMPL

- Variables ____NAME___ are tokens which are replaced by values to create a valid Eclipse include file
- Templates can be created for any simulator or for any text based application

*.TMPL to *.INC file conversion by GLOBAL

INC

								_								
MULTIPLY									MULTIPLY	/						
TRANZ	MULTZ12	1	11	1	11	2	2/		TRANZ	9.14E-05	1	11	1	11	2	2/
TRANZ	MULTZ23	1	11	1	11	4	4/		TRANZ	4.86E-05	1	11	1	11	4	4/
PORV	MULTPV1	1	11	1	11	1	2/		PORV	1.18706	1	11	1	11	1	2/
PORV	MULTPV2	1	11	1	11	3	4/		PORV	0.754902	1	11	1	11	3	4/
PORV	MULTPV3	1	11	1	11	5	6/		PORV	1.44706	1	11	1	11	5	6/
TRANX	MULTX1	1	11	1	11	1	2/		TRANX	1.86784	1	11	1	11	1	2/
TRANY	MULTX1	1	11	1	11	1	2/	Ľ,	TRANY	1.86784	1	11	1	11	1	2/
TRANX	MULTX2	1	11	1	11	3	4/		TRANX	0.516863	1	11	1	11	3	4/
TRANY	MULTX2	1	11	1	11	3	4/		TRANY	0.516863	1	11	1	11	3	4/
TRANX	MULTX3	1	11	1	11	5	6/		TRANX	1.69294	1	11	1	11	5	6/
TRANY	MULTX3	1	11	1	11	5	6/		TRANY	1.69294	1	11	1	11	5	6/
/									1							

TMPL

- GLOBAL substitutes variable names GA evolved values
- If there are mathematical expressions, GLOBAL calculates resultant values
- GLOBAL saves resultant file as .INC file for inclusion to ECLIPSE *.DATA

STEP 2: Construct DISTRIBUTION File (.DISTR)

NAME?	BASE	LOW	HIGH	NBIT	LOG10?	CONT?
MULTZ12	-5	-7	-2	4	1	1
MULTZ23	-3	-6	-1	4	1	1
MULTPV1	1	0.9	1.5	4	0	1
MULTPV2	0.8	0.5	1	4	0	1
MULTPV3	1	0.9	1.8	4	0	1
MULTX1	1.5	1.2	2.5	4	0	1
MULTX2	0.7	0.3	1	4	0	1
MULTX3	1.5	1.1	2	4	0	1

- **BASE** sensitivity analysis as baseline in the Tornado diagram
- **LOW/HIGH** lower and higher bounds of variables
- **NBIT** number of bits used to represent current variable in a genome binary string
- LOG10 whether base/low/high values in current row are after log10
- **CONT** whether this variable is continuous (1) or discrete (0)

STEP 3: Prepare input file (.INP)

DIP_STUDYNAME ECLRFT	Simulator settings ECLIPSE
DIP_OBJECTIVE LPT MDT	Objective settings
DIP_SMRY_OBS1 SCHEDULE	Observed data from WCONHIST (Observed production data prepared in WCONHIST
DIP_MDT_OBS1 obs_mdt_office.txt	and WCONINJH; Observed MDT data prepared in ECL Office format)
use first 19 .S* file for HM, rest for prediction DIP_KEY_TSTEP 19 1-19	TSTEPS in OBJ.
DIP_INC_TMPL 1 MULTIPLY.TMPL	Variable settings Templates for variable substitution
DIP_INC_DISTR COARSE.DISTR	Distribution of variables
DIP_PROXY_NED 50 DIP_PROXY_TOL 0.5	Proxy settings NO. of experiment designs Tolerance for proxy check
DIP_GA_REPLACE 0.7 DIP_GA_POPSIZE 50 DIP_GA_NGEN 20	GA settings Elitism algorithm (Bottom 70% replaced) Population size (Even NO.) Max. NO. of generation

STEP 4: Run global

Add ECLIPSE into the system path

PATH=%PATH%;c:/ecl/macros

- Double-click on the executable file
- Input "ECL" and "ECLRFT.INP" interactively

VIEW OPTIMIZATION RESULTS

- Check results from .OBJ file
- Open .OBJ file by EXCEL and sort by objectives from smallest to largest
- Choose models with smaller objectives.
- Each chosen model is labeled by Run#. You can find the corresponding zip file backed up by the name *_####_Run#.zip

	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р
1	MULTZ12_ 🔻	MULTZ23 💌		MULTPV2_ 🔻	MULTPV3_ 🔻		MULTX2 🔽		ObjOver vi	ObjProx 🔻	ProxyEri 🝷	DataExact 💌	objLP 🔻	objME 🔻	Run# 🔻	Generation 💌
2	-3.22E+00	-2.12E+00	1.19E+00	8.88E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.77E+00	3.77E+00	0.00E+00	0.00E+00	9.23E+01	2.05E+01	444	20
3	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.88E-01	1.73E+00	3.81E+00	3.81E+00	0.00E+00	0.00E+00	9.79E+01	2.08E+01	401	18
4	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.88E-01	1.73E+00	3.82E+00	3.82E+00	0.00E+00	0.00E+00	9.86E+01	2.09E+01	388	18
5	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.88E-01	1.73E+00	3.82E+00	3.82E+00	0.00E+00	0.00E+00	9.84E+01	2.10E+01	413	19
6	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.88E-01	1.73E+00	3.82E+00	3.82E+00	0.00E+00	0.00E+00	9.88E+01	2.10E+01	389	18
7	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.82E+00	3.82E+00	0.00E+00	0.00E+00	1.01E+02	2.06E+01	323	14
8	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.82E+00	3.82E+00	0.00E+00	0.00E+00	1.01E+02	2.06E+01	370	17
9	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.82E+00	3.82E+00	0.00E+00	0.00E+00	1.01E+02	2.07E+01	397	18
10	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.83E+00	3.83E+00	0.00E+00	0.00E+00	1.02E+02	2.07E+01	315	13
11	-2.90E+00	-2.10E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.83E+00	3.83E+00	0.00E+00	0.00E+00	1.03E+02	2.06E+01	432	20
12	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.88E-01	1.73E+00	3.83E+00	3.83E+00	0.00E+00	0.00E+00	1.01E+02	2.10E+01	422	19
13	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.66E-01	1.73E+00	3.83E+00	3.83E+00	0.00E+00	0.00E+00	1.03E+02	2.07E+01	349	15
14	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.88E-01	1.73E+00	3.83E+00	3.83E+00	0.00E+00	0.00E+00	1.00E+02	2.12E+01	404	18
15	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.83E+00	3.83E+00	0.00E+00	0.00E+00	1.04E+02	2.06E+01	415	19
16	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.45E+00	1.59E+00	5.88E-01	1.73E+00	3.83E+00	3.83E+00	0.00E+00	0.00E+00	9.91E+01	2.16E+01	403	18
17	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.66E-01	1.73E+00	3.84E+00	3.84E+00	0.00E+00	0.00E+00	1.03E+02	2.08E+01	427	19
18	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.66E-01	1.73E+00	3.84E+00	3.84E+00	0.00E+00	0.00E+00	1.04E+02	2.07E+01	406	18
19	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.88E-01	1.73E+00	3.84E+00	3.84E+00	0.00E+00	0.00E+00	1.02E+02	2.11E+01	433	20
20	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.66E-01	1.73E+00	3.84E+00	3.84E+00	0.00E+00	0.00E+00	1.04E+02	2.09E+01	390	18
21	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.84E+00	3.84E+00	0.00E+00	0.00E+00	1.05E+02	2.07E+01	393	18
22	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.88E-01	1.73E+00	3.84E+00	3.84E+00	0.00E+00	0.00E+00	1.02E+02	2.13E+01	398	18
23	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.88E-01	1.73E+00	3.84E+00	3.84E+00	0.00E+00	0.00E+00	1.02E+02	2.12E+01	375	17
24	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.88E-01	1.73E+00	3.85E+00	3.85E+00	0.00E+00	0.00E+00	1.03E+02	2.12E+01	435	20
25	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.66E-01	1.73E+00	3.85E+00	3.85E+00	0.00E+00	0.00E+00	1.06E+02	2.09E+01	428	19
26	-3.22E+00	-2.10E+00	1.19E+00	9.04E-01	1.46E+00	1.60E+00	5.66E-01	1.73E+00	3.85E+00	3.85E+00	0.00E+00	0.00E+00	1.06E+02	2.09E+01	425	19
27	-3.22E+00	-2.12E+00	1.19E+00	9.04E-01	1.46E+00	1.58E+00	5.88E-01	1.73E+00	3.87E+00	3.87E+00	0.00E+00	0.00E+00	1.02E+02	2.26E+01	442	20
28	-3.22E+00	-2.10E+00	1.20E+00	9.04E-01	1.45E+00	1.60E+00	5.88E-01	1.73E+00	3.88E+00	3.88E+00	0.00E+00	0.00E+00	1.10E+02	2.13E+01	436	20
29	-3.22E+00	-2.12E+00	1.20E+00	9.04E-01	1.45E+00	1.60E+00	5.66E-01	1.73E+00	3.89E+00	3.89E+00	0.00E+00	0.00E+00	1.15E+02	2.07E+01	429	20

Global Results in ECLIPSE Office

RESULTING MATCHES

Liquid production from global updates

MDT pressure matches: P1

RESULTING MATCHES (Cont.)

MDT pressure matches: P2

MDT pressure matches: P4

Global GUI (Standalone Application in C#)

Home Page

🖳 GLOBAL	
Home Input Parameters Parameter Distribution GA History Data Results	
Harold Vance Department of PETROLEUM ENGINEERING T E X A S A & M UNIVERSITY	
BRIEF DESCRIPTION:	
1. Global is a Genetic Algorithm based History Matching Software.	
2. It can also be used for Sensitivity Analysis and Parameter optimization.	
3. It may work with any one of the following forward models:	
- CMG - Eclipse - FMM - UTCHEM - S3D	
Reference Manual	
CANCEL START >>	

Global Inputs

🖳 GLOBAL			
Home Input Parameters Pa	arameter Distribution GA	History Data Results	
Working Direc	C:\GLOBAL\Eclip	ose_synthetic_case\	Browse
Input File (*)	© Create New		Create
	Existing File	ECLRFT.INP	Browse
Forward Simula Path for Forward Simula	ator ECLIPSE ator \$eclipse	•	Browse
Data File	ECLRFT		Browse
Sensitivity Analysis On	ly?		
<< BACK			NEXT >>

Global Parameters

🖳 GLOBAL			
Home Input Parameters Parameter	Distribution GA	History Data Results	
Template Files (*.TMPL)	Select the Temp	plate Files to be used :	
Distribution File (*.DISTR)	 Create New Existing File 	COARSE.DISTR	Create Browse
<< BACK			NEXT >>

Parameter Distribution

🖶 GLOBA	AL.										
Home	Input	Parar	neters	Paramet	er Distribut	ion GA	Hist	ory Data	Results		
			1								1
			NAME	-	BASE	MIN	MAX	NBIT	LOG10	CONTINU	
			M U	LTZ12	-5	-7.0	-2.0	8	1	1	
			M U	LTZ23	-3	-6.0	-1.0	8	1	1	
		•	MU	LTPV1	1.0	0.9	1.5	8	0	1	
			M U	LTPV2	0.8	0.5	1.0	8	0	1	
			M U	LTPV3	1.0	0.9	1.8	8	0	1	
			M U	LTX1_	1.5	1.2	2.5	8	0	1	
			M U	LTX2	0.7	0.3	1.0	8	0	1	
			M U	LTX3	1.5	1.1	2.0	8	0	1	
		*									
	Na	mo	LAL II								
	No	me									Add
в	ase Va	alue	10		Min Valu	e 09		Max V	/alue 15		
			1.0		ran. vere	0.5		1-144.			Delete
			0		1	2		Continu			Undato
	NO. OF I	BITS	8	•	Logit	0 (1	io) -	Continu	OUS? 1 (Yes	5) 🔻	opdate
							Savo				
							Jave				
	<<	BACK	[N	EXT >>

Global GA

🖳 GLOBAL			
Home Input Parameters Parameter Dist	ribution GA	History Data Results	
Objective Functions	FBHP GPT LPT MDT		
NED for Proxy Model	50	Use existing Proxy .BIN file ?	
Tolerance for Proxy Model	0.5		
No. of Generations	20		
Population per Generation	50		
Elitism Replacement Probability	0.7		
GA Crossover Probability		Select •	
Mutation		Select -	
<< BACK		NE	EXT >>

History Data

🖳 GLOBAI	L						
Home	Input	Parameters	Parameter Distrib	ution GA	History Data	Results	
		Sumr	nary file	Schedu	le ⊚*.b	kt/*.fhf Browse	
		MDT	Obs. file	obs_mdt_	office.txt	Browse	
	Dra	ainage Vol. (Obs. file			Browse	
	Time	Interval/Tim	e Steps	Time In 0-19	terval 🔘 Time	e Steps	
		Wells	s for HM	P1 P2 P3 P4 I1		lect All	
	<< BA	АСК					SUBMIT >>

Results

